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Introduction 

Rapid changes in dynamic urban environments are difficult to map and track with 
traditional data collection methods and can pose difficulty for navigation and 
wayfinding. This research looks at an extension of a long-term research effort in 
assistive geotechnology, whose aim has been to help individuals with reduced vision, 
blindness, and mobility impairment, gain access to real-time geographic information, 
including obstacles to navigation. A real-time obstacle notification system deployed 
through smart phones is presented, along with positional accuracy metrics and field 
testing with moving end-users and obstacle notifications. This research provides a view 
of dynamic engagement and interaction with crowdsourced obstacle data and offers 
insights into how such a system can function in the context of accuracy and uncertainty.  

Data collection and quality assessment in a geocrowdsourcing testbed 

For the past fifteen years, crowdsourcing has developed from an idea of geographically 
distributed information sharing communities (Goodchild et al. 2005) to a modern, 
bedrock data contribution mechanism used by individuals, businesses, non-profits and 
government agencies. Data collection by the public with location-aware mobile devices 
is now a common. While geocrowdsourced data collection is no longer a novel, the 
accuracy, reliability, and fitness-for-use of crowdsourced data remain critical issues.  
This research aims to expand the knowledge of how accuracy can be used to guide 
dynamic engagement with geocrowdsourced data.  

Along with research on general trends and applications (e.g., Sui et al. 2013), important 
work has been done on accuracy assessment, data limitations, and quality assessment 
protocols for crowdsourced data. Haklay (2010) and Girres and Touya (2010 compare 
OpenStreetMap is compared to authoritative data sources, noting positional error 
characteristics and other accuracy metrics.  While Haklay (2010) focuses primarily on 
positional accuracy and issues of completeness and coverage, Girres and Touya perform 
a more comprehensive assessment of data quality, using metrics such as positional 
accuracy, attribute accuracy, logical consistency, completeness, semantic accuracy, 
temporal accuracy, and lineage. This set of metrics was identified and developed earlier 
during the nascent GIS era by Goodchild and Gopal (1989), Guptill and Morrison 



(1995), Veregin and Hunter (1998), and Veregin (1999). Other notable work on 
attribute accuracy is presented by Camponovo and Freundschuh (2014), who analyse 
message data from the 2010 Haitian Earthquake, finding that 50% of messages were 
miscommunicated by volunteers, underscoring the importance of analysing attribute 
data in circumstances where crowdsourcing is used in disaster response.   
 
Another important work is Goodchild and Li (2012), who discuss methods of 
geocrowdsourced quality assessment.  They describe three general approaches for 
quality: a crowdsourced quality assessment approach based on Linus’s Law, where 
errors are identified and corrected by the crowd; a social approach, where moderator 
intervention corrects errors; and a geographic approach, which uses rules and 
relationships that identify problematic data contributions.  The list of quality assessment 
metrics in Girres and Touya (2010), and the approaches for quality assessment in 
Goodchild and Li (2012) form the basis of quality assessment used in this research. 
These quality assessment metrics and approaches are summarized comprehensively by 
Qin et al. (2016) and updated by Rice et al. (2018).  

The George Mason University Geocrowdsourcing Testbed 
 
The GMU geocrowdsourcing testbed was initially developed between 2012 and 2015 to 
explore the data contribution dynamics, training protocols, moderation mechanisms, and 
dynamic uses of geocrowdsourced data (Rice et al. 2014, 2015).  A period of testing and 
refinement continued through 2016-2018, including field work summarized in student 
research theses by Rice (2015) and Williams (2018).  The primary purpose of the 
testbed was to crowdsource transitory navigation obstacles, reported by local data 
contributors, and experiment with quality assessment metrics derived from the data. The 
transitory navigation obstacles reported through this system (Figure 1) pose a difficulty 
for individuals with vision and mobility impairments, due to their reliance on a small 
number of tested and learned safe navigation corridors.  While sighted and mobile 
individuals simply find a new route around the obstacle, this process is much more 
challenging for individuals who are blind, visually-impaired, and mobility-impaired.   

 
Figure 1. Transitory navigation obstacle 
  
The community of users that contribute to the GMU geocrowdsourcing testbed submit 
obstacle reports through desktop applications (Figure 1), as well as various mobile 
applications. These contribution mechanisms allow positioning of obstacle reports 
through both asserted and derived methods, and allow the submission of a variety of 



attribute descriptions and images. This allows for a wide variety of quality assessment 
metrics to be used, based on User-ID (lineage and history), user-asserted positional 
accuracy and GPS-derived positional accuracy, attributes (location description text, 
obstacle description text) temporal consistency (asserted observation date and time, 
submission date and time), measures of asserted duration and urgency, image 
submissions, and free text responses, which are geoparsed and used for position 
validation (Aburizaiza et al. 2016). 

 
Figure 2.The GMU Geocrowdsourcing Testbed (2015). 
 
Among these many quality assessment metrics derived and used in the GMU 
Geocrowdsourcing Testbed, this paper looks at closely at three specific aspects of 
quality and uncertainty:  The positional uncertainty of unmoderated, raw data 
contributions, the positional uncertainty moderated data contributions, and the dynamic 
interaction of end-users with mobile devices whose positions are uncertain.  Each of 
these aspects of uncertainty will be reviewed, followed by field testing results based on 
the uncertainties.      

Positional uncertainty of data contributions and limitations of the moderation 
process 
An early analysis of positional accuracy of raw submitted data was conducted in 2014 
showing wide variation in horizontal positional accuracy of 55 contributed reports, with 
a mean of 18.36 meters, and a range spanning just above 0 meters to nearly 450 meters 
(Figure 3).  This was discussed in Rice et al. (2014) as being primarily due to mistakes 
in asserted positioning near similarly-shaped buildings.  The map-based asserted 
positioning routine (done through a desktop map interface) resulted in large errors that 
needed correction.   
 



 
Figure 3. Positional accuracy of crowdsourced obstacle data. 
 
Subsequent developments in data positioning via mobile device GPS allowed a much 
broader and more comprehensive set of position validation methods.   
 
A quality assessment protocol based on Goodchild and Li’s (2012) social approach for 
VGI data quality was developed, adopted, and tested.  This approach involves data 
contribution correction and update by a trained moderator, who field checks submitted 
obstacle reports and moves reports to correct locations with the help of high-resolution 
imagery, base data, and a moderator dashboard.  This approach, however, still has 
accuracy limits.  In a research thesis, Rice (2015) explored the limitations of this 
moderated data quality approach by having three trained moderators independently 
field-check  and correct a series of 31 obstacle reports contributed to the system. Rice 
subsequently analyzed the general positional and attribute accuracy of the 93 moderated 
reports. The moderator positioning of three of these reports is shown in Figure 4.  
Contrasting the earlier reported findings of positional error (Figure 3), Rice found the 
average positional error of moderated reports to be 2.12 meters for small features 
(contributed to the system as points) and 5.55 meters for large features (contributed to 
the system as areas).  These findings generally concurred with other geocrowdsourcing 
accuracy studies (e.g., Haklay 2010, Girres and Touya 2010, and others) who report 
positional accuracies of well-defined crowdsourced points as being between 5 and 10 
meters.  A 6-meter threshold value (6.65 for Girres and Touya 2010, 5.83 for Haklay 
2010) became an accepted rubric for positional quality in our study and was colloquially 
referred to as the “Haklay distance”, noting his citation of this metric in his own 
influential 2010 paper.   



 
Figure 4. Moderator positioning of reported obstacles (from Rice, 2015). 

Positional uncertainty of GPS-based mobile devices 
 
Concurrent with the moderated quality assessment study discussed above, research was 
conducted to verify mobile device GPS accuracy, in order to understand the limitations 
of the geocrowdsourcing testbed alert functions, which depend on end-user location 
relative to obstacles. Three mobile devices in use during our most extensive field 
research period (2015-2016) were tested over three tracks that included combinations of 
heavy tree canopy, no canopy, partial canopy, and urban building cover.  Ground truth 
was gathered by a high-precision, differentially-corrected GPS device.  The Fréchet 
distance (1906), computed as the offset between two curves, was recorded for all 
devices over the testing tracks and elapsed time.  Figures 5 and 6 show these tracks, and 
Table 1 summarizes the positional accuracy for the devices under a variety of conditions 
and canopy types.  The best device has an Fréchet distance of 5.92m, and the worst 
device had an average Fréchet distance of 10.51 meters.  While newer devices have not 
yet been tested on the same tracks, this is a planned step for the near future.     
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Figure 5. Overhead view of mobile device GPS tracks, Fairfax Virginia. 
 

 
Figure 6. Mobile GPS tracks and average Fréchet distances for iPhone4, iPhone5, and 
iPhone 6, Fairfax VA 
 

 
Table 1. Fréchet distances of three mobile devices tested over three tracks. 
  
 



Mobile application alerts and dynamic obstacle engagement 
 
Two mobile applications were developed for testing the alert functionality of the GMU 
Geocrowdsourcing Testbed.  Each application was required to track an end-users 
trajectory, and then query the GMU Geocrowdsourcing Testbed for nearby obstacles.  
Each mobile application was required to then deliver an auditory and information alert 
about reported obstacles ahead of the user.  Figure 7 shows the native mobile 
application, developed with Swift for iOS and referred to generically below as 
“MobileApp”.  Figure 8 shows the web application, for use with any mobile device, and 
referred to hereafter as “WebApp”. Each application was programmed to deliver an 
alert to the end-user when he or she approached within 30.48 meters (100 feet) of an 
obstacle.  This alert threshold was set based on earlier knowledge about the average 
positional accuracy of reports (18.23 meters for raw reports, 2.2-5.5 meters for 
moderated reports) and mobile device GPS errors between 5.9m and 10.5m.   In the 
case computed with the highest average errors (raw unmoderated reports and an older 
mobile devices) the additive positional error of the reports and the mobile device would 
be 28.73m (18.23m + 10.5m).  A warning distance of 30.48 meters, reflecting this 
highest average error case, was thought to be sufficient, knowing that the majority of 
obstacle reports would be moderated and have positional error rates in a much lower 
range (2.2-5.5 meters).   



 

Figure 7. Native mobile application (“MobileApp”) for obstacle engagement, developed 
with Swift for iOS 



 

Figure 8. Web Application for mobile obstacle interaction (“WebApp”), developed with 
Turf/Mapbox and MongoDB 
 
 
The field-testing protocol required an end-user to move toward a specific reported 
obstacle from eight different directions in consecutive trials, in order to remove any 
systematic error due to overhead canopy or multipath GPS error from nearby buildings.   
During the first set of trials, the end-user also travelled toward obstacles at a walking 
pace (3 miles per hour / 4.8 km per hour) followed by a second set of trials traveling at a 
bicycling pace (10 miles per hour / 16.1 km per hour).  The end user engaged with both  
obstacles in consecutive sets of trials.  The obstacles used in this field study are referred 
to in our geocrowdsourcing tested and figures below as Obstacle 11 and Obstacle 367.  
The position and the distance at which an alert was received by the moving end-user 
was recorded for each device, for each application, and for each obstacle.  These results 
are shown below in Figures 9, 10, 11, and 12.   
 



 

Figure 9. Dynamic obstacle engagement and alert distances with WebApp, Obstacle 11 
summary 
 



 

Figure 50. Dynamic obstacle engagement and alert distances with WebApp, Obstacle 
367 summary 



 

Figure 61. Dynamic obstacle engagement with MobileApp, obstacle 11 summary 



 

Figure 72. Dynamic obstacle engagement and alert distances with MobileApp, obstacle 
367 summary 
 
In the figures above, the best performance is indicated with a curve the furthest out from 
the obstacle (red point), indicating the specific mobile device has triggered an alert the 
most quickly as the user moves toward the obstacle.  During the elapsed time between 



the start of movement and the alert point, the application has calculated the movement 
direction and distance, and has queried the server for obstacles nearby.  The application 
has then tracked distance, and provided an alert when the user reaches 100 feet (30.48 
meters).   In every case reported here, the alert distance is less than 100 feet (30.48 
meters) as expected. There does not appear to be a systematic difference between any 
specific devices tested with regard to the alert distances, but there does appear to be 
significant differences between the WebApp and the native MobileApp, and between 
the modes of travel, both of which were anticipated. These results are summarized in 
Table 2 (below).   The walking speed alert distances were higher in every case than the 
biking speed alert distances, and the MobileApp performed better than the WebApp in 
each case.  As indicated above, the warning distance (100 ft. / 30.48m) was designed to 
cover the case of an unmoderated report (with an average error of 18.23m) and a device 
with a positional error of 10.5 meters, reflecting our own testing.   This scenario was 
only matched by the MobileApp used at walking speed, where the alert was triggered 
29.8 meters away.   In each summary case below (Table 2) the observed alert distances 
did accommodate the usual or expected cases of moderated reports in the 
geocrowdsourcing testbed, with positional errors between 2.2m and 5.5m, and mobile 
devices with positional errors between 5.9 and 10.5 meters, for a composite distance of 
8.1 to 16.0 meters.   
 
Distances in ft 
(meters) 

Obstacle 11 Obstacle 367 
WebApp MobileApp WebApp MobileApp 

Walking 77.9 (23.7) 93.3 (28.4) 69.3 (21.1) 97.9 (29.8) 
Biking 65.5 (20.0) 84.7 (25.5) 52.9 (16.1) 83.9 (25.6) 

 
Table 2. Alert distances summarized by mode of travel and by application type 

Summary and Conclusions 
 
Geocrowdsourced data is an important input for GIS and cartographic processes, and 
research on applications, uses, dynamics, and social aspects has matured.  Analysis of 
error and uncertainty is still important and remains a critical factor in the use of such 
data.  An important domain for geocrowdsourcing is transitory obstacles, which are a 
major problem for individuals who depend on consistent routes between origin and 
destination, including those that are blind, visually-impaired, and mobility-impaired.  
The GMU geocrowdsourcing testbed was created to study the dynamics of 
geocrowdsourcing and to offer a potential solution for this problem.  Accuracy 
assessment workflows based on best practices and innovative approaches have been 
developed, tested, and published.  This research documents how knowledge about 
positional error can be used to design an obstacle alert system that works within the 
expected tolerances for positional error of reported obstacles, and for the expected 
errors in mobile device GPS.  Future work will focus on the use of native mobile 
applications, due to better observed performance as seen in this work.  We also intend to 
analyze redundant user reporting patterns, and image metadata to augment and validate 
other accuracy metrics.   
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